Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.842
Filtrar
1.
PLoS One ; 19(5): e0293436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38723019

RESUMO

BACKGROUND: Free throw is an important means of scoring in basketball games. With the improvement of basketball competition level and the enhancement of confrontation degree, the number of free throws in the game gradually increases, so the score of free throw will have an important impact on the result of the game. The purpose of this study is to explore the relationship between visual attention characteristics and hit rate of basketball players in free throw psychological procedure training, so as to provide scientific basis for basketball teaching and training. METHODS: Forty players with similar free throw abilities were randomly assigned to the experimental group (10 males, 10 females) and control group (10 males, 10 females). The experimental group was free throw psychological procedure training, while the control group was trained with routine training, Eye movement indices (number of fixations, fixation duration, and pupil dilation) and the free throw hit rate and analyzed before and after the experiment. Group differences were examined using t-tests, while paired sample t-tests were conducted to compare pre- and post-test results within each group. The training time and training times of the two groups were the same. RESULTS: There were significant differences in fixation duration, number of fixations, pupil diameter and free throw hit rate between pre-test and post-test in the experimental group (P < 0.05). Post-test, there were significant differences in number of fixations, fixation duration, pupil diameter and free throw hit rate between the two groups (P < 0.05). There was a significant positive correlation between number of fixations and free throw hit rate in top (P < 0.01), and there was a significant positive correlation between fixation duration and hit rate in front (P < 0.01). CONCLUSIONS: The psychological procedure training can improve the visual information search strategy and information processing ability of free throw, and significantly improve the free throw hit rate. There was a positive correlation between the front fixation time and the free throw hit rate, and there was a positive correlation between the top number of fixations and the free throw hit rate.


Assuntos
Basquetebol , Fixação Ocular , Humanos , Masculino , Feminino , Basquetebol/psicologia , Adulto Jovem , Fixação Ocular/fisiologia , Desempenho Atlético/fisiologia , Desempenho Atlético/psicologia , Atenção/fisiologia , Movimentos Oculares/fisiologia , Adulto
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731961

RESUMO

Recently, the increase in marine temperatures has become an important global marine environmental issue. The ability of energy supply in marine animals plays a crucial role in avoiding the stress of elevated temperatures. The investigation into anaerobic metabolism, an essential mechanism for regulating energy provision under heat stress, is limited in mollusks. In this study, key enzymes of four anaerobic metabolic pathways were identified in the genome of scallop Chlamys farreri, respectively including five opine dehydrogenases (CfOpDHs), two aspartate aminotransferases (CfASTs) divided into cytoplasmic (CfAST1) and mitochondrial subtype (CfAST2), and two phosphoenolpyruvate carboxykinases (CfPEPCKs) divided into a primitive type (CfPEPCK2) and a cytoplasmic subtype (CfPEPCK1). It was surprising that lactate dehydrogenase (LDH), a key enzyme in the anaerobic metabolism of the glucose-lactate pathway in vertebrates, was absent in the genome of scallops. Phylogenetic analysis verified that CfOpDHs clustered according to the phylogenetic relationships of the organisms rather than substrate specificity. Furthermore, CfOpDHs, CfASTs, and CfPEPCKs displayed distinct expression patterns throughout the developmental process and showed a prominent expression in muscle, foot, kidney, male gonad, and ganglia tissues. Notably, CfASTs displayed the highest level of expression among these genes during the developmental process and in adult tissues. Under heat stress, the expression of CfASTs exhibited a general downregulation trend in the six tissues examined. The expression of CfOpDHs also displayed a downregulation trend in most tissues, except CfOpDH1/3 in striated muscle showing significant up-regulation at some time points. Remarkably, CfPEPCK1 was significantly upregulated in all six tested tissues at almost all time points. Therefore, we speculated that the glucose-succinate pathway, catalyzed by CfPEPCK1, serves as the primary anaerobic metabolic pathway in mollusks experiencing heat stress, with CfOpDH3 catalyzing the glucose-opine pathway in striated muscle as supplementary. Additionally, the high and stable expression level of CfASTs is crucial for the maintenance of the essential functions of aspartate aminotransferase (AST). This study provides a comprehensive and systematic analysis of the key enzymes involved in anaerobic metabolism pathways, which holds significant importance in understanding the mechanism of energy supply in mollusks.


Assuntos
Glucose , Resposta ao Choque Térmico , Pectinidae , Filogenia , Animais , Pectinidae/metabolismo , Pectinidae/genética , Glucose/metabolismo , Resposta ao Choque Térmico/fisiologia , Anaerobiose , Ácido Succínico/metabolismo , Redes e Vias Metabólicas , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/genética
3.
Toxicology ; 505: 153825, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38710382

RESUMO

Cadmium telluride (CdTe) quantum dots (QDs) have garnered significant attention for tumor imaging due to their exceptional properties. However, there remains a need for further investigation into their potential toxicity mechanisms and corresponding enhancements. Herein, CdTe QDs were observed to accumulate in mouse liver, leading to a remarkable overproduction of IL-1ß and IL-6. Additionally, there was evidence of macrophage infiltration and activation following exposure to 12.5 µmol/kg body weight of QDs. To elucidate the underlying mechanism of macrophage activation, CdTe QDs functionalized with 3-mercaptopropionic acid (MPA) were utilized. In vitro experiments revealed that 1.0 µM MPA-CdTe QDs activated PINK1-dependent mitophagy in RAW264.7 macrophages. Critically, the autophagic flux remained unimpeded, as demonstrated by the absence of p62 accumulation, LC3 turnover assay results, and successful fusion of autophagosomes with lysosomes. Mechanically, QDs increased reactive oxygen species (ROS) and mitoROS by damaging both mitochondria and lysosomes. ROS, in turn, inhibited NRF2, resulting in the phosphorylation of ERK1/2 and subsequent activation of mitophagy. Notably, 1.0 µM QDs disrupted lysosomes but autophagic flux was not impaired. Eventually, the involvement of the ROS-NRF2-ERK1/2 pathway-mediated mitophagy in the increase of IL-1ß and IL-6 in macrophages was confirmed using Trolox, MitoTEMPO, ML385, specific siRNAs, and lentivirus-based interventions. This study innovatively revealed the pro-inflammatory rather than anti-inflammatory role of mitophagy in nanotoxicology, shedding new light on the mechanisms of mitochondrial disorders induced by QDs and identifying several molecular targets to comprehend the toxicological mechanisms of CdTe QDs.

4.
Front Microbiol ; 15: 1392134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741738

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) has been recognized in hospitals, community and livestock animals and the epidemiology of MRSA is undergoing a major evolution among humans and animals in the last decade. This study investigated the prevalence of MRSA isolates from ground pork, retail whole chicken, and patient samples in Hanzhong, China. The further characterization was performed by antimicrobial susceptibility testing and in-depth genome-based analysis to identify the resistant determinants and their phylogenetic relationship. A total of 93 MRSA isolates were recovered from patients (n = 67) and retail livestock products (n = 26) in Hanzhong, China. 83.9% (78/93) MRSA isolates showed multiple drug resistant phenotype. Three dominant livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) sequence types were identified: ST59-t437 (n = 47), ST9-t899 (n = 10) and ST398 (n = 7). There was a wide variation among sequence types in the distribution of tetracycline-resistance, scn-negative livestock markers and virulence genes. A previous major human MRSA ST59 became the predominant interspecies MRSA sequence type among humans and retail livestock products. A few LA-MRSA isolates from patients and livestock products showed close genetic similarity. The spreading of MRSA ST59 among livestock products deserving special attention and active surveillance should be enacted for the further epidemic spread of MRSA ST59 in China. Data generated from this study will contribute to formulation of new strategies for combating spread of MRSA.

5.
BMJ Open ; 14(5): e081940, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719309

RESUMO

OBJECTIVES: This study aimed to determine the potential profiles of self-psychological adjustment in patients with lung cancer undergoing chemotherapy, including sense of coherence (SOC) and positive cognitive emotion regulation (PCER). The relationship between these profiles with post-traumatic growth (PTG) and the relevant factors of self-psychological adjustment in different profiles was analysed. DESIGN: Cross-sectional study. SETTING: Patients with lung cancer undergoing chemotherapy in China. PARTICIPANTS: A total of 330 patients with lung cancer undergoing chemotherapy were recruited out of which 321 completed the questionnaires effectively. METHODS: Latent profile analysis was used to identify self-psychological adjustment classes based on the two subscales of the Sense of Coherence Scale and Cognitive Emotion Regulation Questionnaire. One-way analysis of variance and multinomial logistic regression were performed to examine the subgroup association with characteristics and PTG. RESULTS: Three latent profiles of self-psychological adjustment were identified: low level (54.5%), high SOC-low PCER (15.6%) and high PCER (29.9%). The results of univariate analysis showed a significant difference in PTG scores among different self-psychological adjustment subgroups (F=11.55, p<0.001). Patients in the high-PCER group were more likely living in urban areas (OR=2.41, 95% CI 1.17 to 4.97, p=0.02), and time since cancer diagnosis was ≥6 months and <1 year (OR=3.54, 95% CI 1.3 to 9.64, p<0.001). CONCLUSION: This study revealed that most patients with lung cancer undergoing chemotherapy belonged to the low-level group. Three profiles are associated with PTG. There were differences in characteristics between patients treated with chemotherapy for lung cancer in the high-PCER and low-PCER groups. Thus, these profiles provide useful information for developing targeted individualised interventions based on demographic characteristics that would assist PTG in patients with lung cancer undergoing chemotherapy.


Assuntos
Neoplasias Pulmonares , Crescimento Psicológico Pós-Traumático , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/psicologia , Masculino , Estudos Transversais , Feminino , Pessoa de Meia-Idade , China/epidemiologia , Idoso , Adaptação Psicológica , Senso de Coerência , Inquéritos e Questionários , Antineoplásicos/uso terapêutico , Antineoplásicos/efeitos adversos , Adulto , Ajustamento Emocional
6.
Front Plant Sci ; 15: 1342714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745923

RESUMO

Xylanase plays a key role in degrading plant cell wall during pathogenic fungi infection. Here, we identified a xylanase gene, VmXyl2 from the transcriptome of Valsa mali and examined its function. VmXyl2 has highly elevated transcript levels during the infection process of V. mali, with 15.02-fold increase. Deletion mutants of the gene were generated to investigate the necessity of VmXyl2 in the development and pathogenicity of V. mali. The VmXyl2 deletion mutant considerably reduced the virulence of V. mali in apple leaves and in twigs, accompanied by 41.22% decrease in xylanase activity. In addition, we found that VmXyl2 induces plant cell necrosis regardless of its xylanase activity, whereas promoting the infection of V. mali in apple tissues. The cell death-inducing activity of VmXyl2 dependent on BRI1-associated kinase-1 (BAK1) but not Suppressor of BIR1-1 (SOBIR1). Furthermore, VmXyl2 interacts with Mp2 in vivo, a receptor-like kinase with leucine-rich repeat. The results offer valuable insights into the roles of VmXyl2 in the pathogenicity of V. mali during its infection of apple trees.

7.
Int J Biol Macromol ; : 132091, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718990

RESUMO

Here, lignin and nano-clay were used to prepare novel composite adsorbents by one-step carbonization without adding activators for radioactive iodine capture. Specially, 1D nano-clay such as halloysite (Hal), palygorskite (Pal) and sepiolite (Sep) were selected as skeleton components, respectively, enzymatic hydrolysis lignin (EHL) as carbon source, lignin based porous carbon/nano-clay composites (ELC-X) were prepared through ultrasonic impregnation, freeze drying, and carbonization. Characterization results indicated lignin based porous carbon (ELC) well coated on the surface of nano-clay, and made its surface areas increase to 252 m2/g. These composites appeared the micro-mesoporous hierarchical structure, considerable N doping and good chemical stability. Results of adsorption experiments showed that the introduction of ELC could well promote iodine vapor uptake of nano-clay, and up to 435.0 mg/g. Meanwhile, the synergistic effect between lignin based carbon and nano-clay was very significant for the adsorption of iodine/n-hexane and iodine ions, their capacity were far exceed those of a single material, respectively. The relevant adsorption kinetic and thermodynamics, and mechanism of ELC-X composites were clarified. This work provided a class of low-cost and environmentally friendly adsorbents for radioactive iodine capture, and opened up ideas for the comprehensive utilization of waste lignin and natural clay minerals.

8.
PeerJ ; 12: e17268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708351

RESUMO

Objective: To study the efficacy of PADTM Plus-based photoactivated disinfection (PAD) for treating denture stomatitis (DS) in diabetic rats by establishing a diabetic rat DS model. Methods: The diabetic rat DS model was developed by randomly selecting 2-month-old male Sprague-Dawley rats and dividing them into four groups. The palate and denture surfaces of rats in the PAD groups were incubated with 1 mg/mL toluidine blue O for 1 min each, followed by a 1-min exposure to 750-mW light-emitting diode light. The PAD-1 group received one radiation treatment, and the PAD-2 group received three radiation treatments over 5 days with a 1-day interval. The nystatin (NYS) group received treatment for 5 days with a suspension of NYS of 100,000 IU. The infection group did not receive any treatment. In each group, assessments included an inflammation score of the palate, tests for fungal load, histological evaluation, and immunohistochemical detection of interleukin-17 (IL-17) and tumor necrosis factor (TNF-α) conducted 1 and 7 days following the conclusion of treatment. Results: One day after treatment, the fungal load on the palate and dentures, as well as the mean optical density values of IL-17 and TNF-α, were found to be greater in the infection group than in the other three treatment groups (P < 0.05). On the 7th day after treatment, these values were significantly higher in the infection group than in the PAD-2 and NYS groups (P < 0.05). Importantly, there were no differences between the infection and PAD-1 groups nor between the PAD-2 and NYS groups (P > 0.05). Conclusions: PAD effectively reduced the fungal load and the expressions of IL-17 and TNF-α in the palate and denture of diabetic DS rats. The efficacy of multiple-light treatments was superior to that of single-light treatments and similar to that of NYS.


Assuntos
Diabetes Mellitus Experimental , Desinfecção , Ratos Sprague-Dawley , Estomatite sob Prótese , Animais , Masculino , Ratos , Estomatite sob Prótese/microbiologia , Estomatite sob Prótese/radioterapia , Estomatite sob Prótese/tratamento farmacológico , Desinfecção/métodos , Cloreto de Tolônio/farmacologia , Cloreto de Tolônio/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-17/metabolismo , Modelos Animais de Doenças
9.
Small ; : e2309907, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712486

RESUMO

The biophysical properties of the extracellular matrix (ECM) play a pivotal role in modulating cancer progression via cell-ECM interactions. However, the biophysical properties specific to gastric cancer (GC) remain largely unexplored. Pertinently, GC ECM shows significantly heterogeneous metamorphoses, such as matrix stiffening and intricate restructuring. By combining collagen I and alginate, this study designs an in vitro biomimetic hydrogel platform to independently modulate matrix stiffness and structure across a physiological stiffness spectrum while preserving consistent collagen concentration and fiber topography. With this platform, this study assesses the impacts of matrix biophysical properties on cell proliferation, migration, invasion, and other pivotal dynamics of AGS. The findings spotlight a compelling interplay between matrix stiffness and structure, influencing both cellular responses and ECM remodeling. Furthermore, this investigation into the integrin/actin-collagen interplay reinforces the central role of integrins in mediating cell-ECM interactions, reciprocally sculpting cell conduct, and ECM adaptation. Collectively, this study reveals a previously unidentified role of ECM biophysical properties in GC malignant potential and provides insight into the bidirectional mechanical cell-ECM interactions, which may facilitate the development of novel therapeutic horizons.

10.
Dig Dis Sci ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722412
11.
J Sep Sci ; 47(9-10): e2300898, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726747

RESUMO

Based on the specific binding of drug molecules to cell membrane receptors, a screening and separation method for active compounds of natural products was established by combining phospholipase C (PLC) sensitized hollow fiber microscreening by a solvent seal with high-performance liquid chromatography technology. In the process, the factors affecting the screening were optimized. Under the optimal screening conditions, we screened honokiol (HK), magnolol (MG), negative control drug carbamazepine, and positive control drug amentoflavone, the repeatability of the method was tested. The PLC activity was determined before and after the screening. Experimental results showed that the sensitization factors of PLC of HK and MG were 61.0 and 48.5, respectively, and amentoflavone was 15.0, carbamazepine could not bind to PLC. Moreover, the molecular docking results were consistent with this measurement, indicating that HK and MG could be combined with PLC, and they were potential interacting components with PLC. This method used organic solvent to seal the PLC greatly ensuring the activity, so this method had the advantage of integrating separation, and purification with screening, it not only exhibited good reproducibility and high sensitivity but was also suitable for screening the active components in natural products by various targets in vitro.


Assuntos
Produtos Biológicos , Fosfolipases Tipo C , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/isolamento & purificação , Fosfolipases Tipo C/metabolismo , Fosfolipases Tipo C/química , Fosfolipases Tipo C/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Simulação de Acoplamento Molecular , Lignanas/química , Lignanas/isolamento & purificação , Lignanas/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/isolamento & purificação , Humanos , Compostos Alílicos , Fenóis
12.
Redox Biol ; 73: 103176, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38705094

RESUMO

Excitotoxicity is a prevalent pathological event in neurodegenerative diseases. The involvement of ferroptosis in the pathogenesis of excitotoxicity remains elusive. Transcriptome analysis has revealed that cytoplasmic reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels are associated with susceptibility to ferroptosis-inducing compounds. Here we show that exogenous NADPH, besides being reductant, interacts with N-myristoyltransferase 2 (NMT2) and upregulates the N-myristoylated ferroptosis suppressor protein 1 (FSP1). NADPH increases membrane-localized FSP1 and strengthens resistance to ferroptosis. Arg-291 of NMT2 is critical for the NADPH-NMT2-FSP1 axis-mediated suppression of ferroptosis. This study suggests that NMT2 plays a pivotal role by bridging NADPH levels and neuronal susceptibility to ferroptosis. We propose a mechanism by which the NADPH regulates N-myristoylation, which has important implications for ferroptosis and disease treatment.

13.
J Phys Chem Lett ; : 5202-5207, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717357

RESUMO

Far-red cyanobacteriochromes (CBCRs) are bilin-based photosensory proteins that promise to be novel optical agents in optogenetics and deep tissue imaging. Recent structural studies of a far-red CBCR 2551g3 have revealed a unique all-Z,syn chromophore conformation in the far-red-absorbing Pfr state. Understanding the photoswitching mechanism through bilin photoisomerization is important for developing novel biomedical applications. Here, we employ femtosecond spectroscopy and site-directed mutagenesis to systematically characterize the dynamics of wild-type 2551g3 and four critical mutants in the 15Z Pfr state. We captured local relaxations in several picoseconds and isomerization dynamics in hundreds of picoseconds. Most mutants exhibited faster local relaxation, while their twisting dynamics and photoproducts depend on specific protein-chromophore interactions around the D-ring and C-ring. These results collectively reveal a unique dynamic pattern of excited-state evolution arising from a relatively rigid protein environment, thereby elucidating the molecular mechanism of Pfr-state photoisomerization in far-red CBCRs.

14.
Heliyon ; 10(9): e29899, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699020

RESUMO

While the 5-year survival rate of patients with advanced non-small cell lung cancer (NSCLC) has seen some improvement, the majority of NSCLC patients fail to respond to immunotherapy with immune checkpoint inhibitors (ICIs). It is critical to identify effective biomarkers that can enhance the efficacy of immunotherapy. The clinical data in the current study were collected from NSCLC patients treated with ICIs, and two groups were classified according to treatment effect: good group with consistent efficacy, poor group with only progressiveness. Differences in intestinal microbiota between the two groups were analyzed using 16s rRNA sequencing. Beta diversity analysis indicated differences between the two groups that were available for differentiation. Comparison of the number of common or unique operational taxonomic units (OTUs) among different groups suggested that there were 53 unique OTUs in the good group and 51 unique OTUs in the poor group. At the phylum level, there was a difference between the two groups for several bacterial groups with the highest abundance values, among which Firmicutes, Actinobacteria and Fusobacteria were more abundant in the good group. Members of the genera Bifidobacterium and Lactobacillus were abundant in the good group, while the abundance of Bacteroides was low. Biomarkers in the poor group included Bacteroides, Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae and Veillonellaceae. The intestinal microbiota composition affected the immunotherapy process for NSCLC, which might offer more rational instructions for the clinical application of ICIs in NSCLC patients.

16.
Front Hum Neurosci ; 18: 1366443, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736530

RESUMO

Introduction: Chronic Ankle Instability (CAI) is a musculoskeletal condition that evolves from acute ankle sprains, and its underlying mechanisms have yet to reach a consensus. Mounting evidence suggests that neuroplastic changes in the brain following ankle injuries play a pivotal role in the development of CAI. Balance deficits are a significant risk factor associated with CAI, yet there is a scarcity of evidence regarding the sensorimotor cortical plasticity related to balance control in affected individuals. This study aims to evaluate the differences in cortical activity and balance abilities between patients with CAI and uninjured individuals during a single-leg stance, as well as the correlation between these factors, in order to elucidate the neurophysiological alterations in balance control among patients with CAI. Methods: The study enrolled 24 patients with CAI and 24 uninjured participants. During single-leg stance, cortical activity was measured using a functional near-infrared spectroscopy (fNIRS) system, which included assessments of the pre-motor cortex (PMC), supplementary motor area (SMA), primary motor cortex (M1), and primary somatosensory cortex (S1). Concurrently, balance parameters were tested utilizing a three-dimensional force platform. Results: Independent sample t-tests revealed that, compared with the uninjured individuals, the patients with CAI exhibited a significant increase in the changes of oxyhemoglobin concentration (ΔHbO) during single-leg stance within the left S1 at Channel 5 (t = 2.101, p = 0.041, Cohen's d = 0.607), left M1 at Channel 6 (t = 2.363, p = 0.022, Cohen's d = 0.682), right M1 at Channel 15 (t = 2.273, p = 0.029, Cohen's d = 0.656), and right PMC/SMA at Channel 11 (t = 2.467, p = 0.018, Cohen's d = 0.712). Additionally, the center of pressure root mean square (COP-RMS) in the mediolateral (ML) direction was significantly greater (t = 2.630, p = 0.012, Cohen's d = 0.759) in the patients with CAI. Furthermore, a moderate positive correlation was found between ML direction COP-RMS and ΔHbO2 in the M1 (r = 0.436; p = 0.033) and PMC/SMA (r = 0.488, p = 0.016), as well as between anteroposterior (AP) direction COP-RMS and ΔHbO in the M1 (r = 0.483, p = 0.017). Conclusion: Patients with CAI demonstrate increased cortical activation in the bilateral M1, ipsilateral PMC/SMA, and contralateral S1. This suggests that patients with CAI may require additional brain resources to maintain balance during single-leg stance, representing a compensatory mechanism to uphold task performance amidst diminished lateral balance ability in the ankle joint.

17.
Sci Total Environ ; 930: 172859, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38692316

RESUMO

Nitrate, as a crucial nutrient, is consistently targeted for controlling water eutrophication globally. However, there is considerable evidence suggesting that nitrate has endocrine-disrupting potential on aquatic organisms. In this study, the sensitivity of various adverse effects to nitrate nitrogen (nitrate-N) was compared, and a toxicity threshold based on endocrine-disrupting effects was derived. The spatiotemporal variations of nitrate-N concentrations in the Luan River basin were investigated, and the associated aquatic ecological risks were evaluated using a comprehensive approach. The results showed that reproduction and development were the most sensitive endpoints to nitrate, and their distribution exhibited significant differences compared to behavior. The derived threshold based on endocrine-disrupting effects was 0.65 mgL-1, providing adequate protection for the aquatic ecosystem. In the Luan River basin, the mean nitrate-N concentrations during winter (4.4 mgL-1) were significantly higher than those observed in spring (0.7 mgL-1) and summer (1.2 mgL-1). Tributary inputs had an important influence on the spatial characteristics of nitrate-N in the mainstream, primarily due to agricultural and population-related contamination. The risk quotients (RQ) during winter, summer, and spring were evaluated as 6.7, 1.8, and 1.1, respectively, and the frequency of exposure concentrations exceeding the threshold was 100 %, 64.3 %, and 42.5 %, respectively. At the ecosystem level, nitrate posed intermediate risks to aquatic organisms during winter and summer in the Luan River basin and at the national scale in China. We suggest that nitrate pollution control should not solely focus on water eutrophication but also consider the endocrine disruptive effect on aquatic animals.


Assuntos
Disruptores Endócrinos , Monitoramento Ambiental , Nitratos , Rios , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Rios/química , China , Disruptores Endócrinos/análise , Nitratos/análise , Animais , Medição de Risco , Organismos Aquáticos/efeitos dos fármacos , Ecossistema
18.
Int Immunopharmacol ; 133: 112055, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38677094

RESUMO

As a transmembrane protein, CD300e is primarily expressed in myeloid cells. It belongs to the CD300 glycoprotein family, functioning as an immune-activating receptor. Dysfunction of CD300e has been suggested in many diseases, such as infections, immune disorders, obesity, and diabetes, signifying its potential as a key biomarker for disease diagnosis and treatment. This review is aimed to explore the roles and potential mechanisms of CD300e in regulating oxidative stress, immune cell activation, tissue damage and repair, and lipid metabolism, shedding light on its role as a diagnostic marker or a therapeutic target, particularly for infections and autoimmune disorders.


Assuntos
Receptores Imunológicos , Humanos , Animais , Receptores Imunológicos/metabolismo , Receptores Imunológicos/imunologia , Estresse Oxidativo , Metabolismo dos Lipídeos , Doenças Autoimunes/imunologia , Antígenos CD/metabolismo , Antígenos CD/imunologia , Biomarcadores
19.
JACS Au ; 4(4): 1356-1364, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665665

RESUMO

Steroidal pharmaceuticals with a 10α-methyl group or without the methyl group at C10-position are important medicines, but their synthesis is quite challenging, due to that the natural steroidal starting materials usually have a 10ß-methyl group which is difficult to be inverted to 10α-methyl group. In this study, 3-((1R,3aS,4S,7aR)-1-((S)-1-hydroxypropan-2-yl)-7a-methyl-5-oxooctahydro-1H-inden-4-yl) propanoic acid (HIP-IPA, 2e) was demonstrated as a valuable intermediate for the synthesis of this kind of active pharmaceutical ingredients (APIs) with a side chain at C17-position. Knockout of a ß-hydroxyacyl-CoA dehydrogenase gene and introduction of a sterol aldolase gene into the genetically modified strains of Mycobacterium fortuitum (ATCC 6841) resulted in strains N13Δhsd4AΩthl and N33Δhsd4AΩthl, respectively. Both strains transformed phytosterols into 2e. Compound 2e was produced in 62% isolated yield (25 g) using strain N13Δhsd4AΩthl, and further converted to (3S,3aS,9aS,9bS)-3-acetyl-3a,6-dimethyl-1,2,3,3a,4,5,8,9,9a,9b-decahydro-7H-cyclopenta[a]naphthalen-7-one, which is the key intermediate for the synthesis of dydrogesterone. This study not only overcomes a challenging synthetic problem by enabling an efficient synthesis of dydrogesterone-like steroidal APIs from phytosterols, the well-recognized cheap and readily available biobased raw materials, but also provides insights for redesigning the metabolic pathway of phytosterols to produce other new compounds of relevance to the steroidal pharmaceutical industry.

20.
J Colloid Interface Sci ; 667: 184-191, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38636220

RESUMO

Accurately regulating ultrafine molybdenum carbide (MoC)-based catalysts is a significant challenge in the rational design of hydrogen evolution reaction (HER) electrocatalysts. Herein, under the guidance of the first principle calculations, we proposed an in-situ polyoxometalate-confined strategy for creating uniformly distributed ultrafine Co-MoC bimetallic nanoparticles in porous carbon nanostars, with the assistance of precisely designed metal-organic framework (MOF). The Co-MoC@C electrocatalyst has a high specific surface area of 969 m2·g-1 because of the conductive carbon substrate with abundant mesopores, which makes for exposing more active sites of Co-MoC nanocrystals (∼1.5 nm) and facilitating electron/ion transport. Thus, Co-MoC@C electrocatalyst shows the excellent electrochemical activity with overpotentials of 88.4 mV and 66.6 mV at a current density of 10 mA·cm-2 under acidic and alkaline conditions, respectively. The in-situ polyoxometalate-confined strategy will provide a new guideline for the design and preparation of efficient HER electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...